xxxyyyyyyyyzzzzzzzzzzzz

News

Jinfei Liu from Zhejiang University

Research Areas and Interests

Research Highlights

Students

Ph.D. Students

Master Students

Jiajun Tang

Qiheng Sun

Undergraduate Students

Alumni

Selected Publications

Jiayao Zhang, Yuran Bi, Mengye Cheng, Jinfei Liu*, Kui Ren, Qiheng Sun, Yihang Wu, Yang Cao, Raul Castro Fernandez, Haifeng Xu, Ruoxi Jia, Yongchan Kwon, Jian Pei, Jiachen T. Wang, Haocheng Xia, Li Xiong, Xiaohui Yu, and James Zou. A Survey on Data Markets. arXiv:2411.07267.

Peng Sun, Lintao Wu, Zhibo Wang, Jinfei Liu, Juan Luo, and Wenqiang Jin. A Profit-Maximizing Data Marketplace with Differentially Private Federated Learning under Price Competition. SIGMOD 2025. (CCF A)

Junyuan Pang, Jian Pei, and Jinfei Liu*. Shapley Value Estimation based on Differential Matrix. SIGMOD 2025. (CCF A)

Yuran Bi, Jinfei Liu*, Kui Ren, Yihang Wu, and Yang Cao. Bargaining-based Data Markets. ICDE 2025. (CCF A)

Shang Liu, Hao Du, Yang Cao, Bo Yan, Jinfei Liu*, and Masatoshi Yoshikawa. PGB: Benchmarking Differentially Private Synthetic Graph Generation Algorithms. ICDE 2025. (CCF A)

Jiayao Zhang, Chirong Zhang, Jian Pei, Xuan Luo, Jianliang Xu, and Jinfei Liu*. Computing Shapley Values in Preference Queries. ICDE 2025. (CCF A)

Haocheng Xia, Jiayao Zhang, Qiheng Sun, Jinfei Liu*, Li Xiong, Jian Pei, and Kui Ren. Computing Shapley Values for Dynamic Data. TKDE 2025. (CCF A)

Lijuan Huo, Libing Wu, Enshu Wang, Jinfei Liu, Chunshuo Li, Zeimei Liu, and Zhuangzhuang Zhang. NTTproofs: a Maintainable and Aggregatable Vector Commitment with Fast Openings and Updates. TIFS 2025. (CCF A)

Yuke Hu, Yang Wang, Jian Lou, Wei Liang, Ruofan Wu, Weiqiang Wang, Xiaochen Li, Jinfei Liu, and Zhan Qin. Privacy Risks of Federated Knowledge Graph Embedding: New Membership Inference Attacks and Personalized Differential Privacy Defense. TDSC 2025. (CCF A)

Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu*, Kui Ren, Lingyang Chu, Yang Cao, and Li Xiong. TabularMark: Watermarking Tabular Datasets for Machine Learning. CCS 2024. (CCF A)

Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. Cross-silo Federated Learning with Record-level Personalized Differential Privacy. CCS 2024. (CCF A)

Qiheng Sun, Jiayao Zhang, Jinfei Liu*, Li Xiong, Jian Pei, and Kui Ren. Shapley Value Approximation Based on Complementary Contribution. TKDE 2024. (CCF A)

Qiheng Sun, Haocheng Xia, and Jinfei Liu*. Data-faithful Feature Attribution: Mitigating Unobservable Confounders via Instrumental Variables. NeurIPS 2024. (CCF A)

Shang Liu, Yang Cao, Takao Murakami, Jinfei Liu*, and Masatoshi Yoshikawa. CARGO: Crypto-Assisted Differentially Private Triangle Counting without Trusted Servers. ICDE 2024. (CCF A)

Yuran Bi, Yihang Wu, Jinfei Liu*, Li Xiong, and Kui Ren. When Data Pricing Meets Non-cooperative Game Theory. ICDE 2024. (CCF A)

Yuran Bi, Jinfei Liu*, Chen Zhao, Junyi Zhao, Li Xiong, and Kui Ren. Share: Stackelberg-Nash based Data Markets. ICDE 2024. (CCF A)

Haocheng Xia, Xiang Li, Junyuan Pang, Jinfei Liu*, Kui Ren, and Li Xiong, P-Shapley: Shaply Values on Probabilistic Classifiers. VLDB 2024. (CCF A)

Yiding Zhu, Hongwei Zhang, Jiayao Zhang, Jinfei Liu*, and Kui Ren, DataPrice: An Interactive System for Pricing Datasets in Data Marketplaces. demo track, VLDB 2024. (CCF A)

Jiayao Zhang, Qiheng Sun, Jinfei Liu*, Li Xiong, Jian Pei, and Kui Ren. Efficient Sampling Approaches to Shapley Value Approximation. SIGMOD 2023. (CCF A)

Haocheng Xia, Jinfei Liu*, Jian Lou, Zhan Qin, Kui Ren, Yang Cao, and Li Xiong, Equitable Data Valuation Meets the Right to be Forgotten in Model Markets. VLDB 2023. (CCF A)

Jiayao Zhang, Haocheng Xia, Qiheng Sun, Jinfei Liu*, Li Xiong, Jian Pei, and Kui Ren. Dynamic Shapley Value Computation. ICDE 2023. (CCF A)

Qiongqiong Lin, Yunfan Gu, Jingyan Sai, Jinfei Liu*, Kui Ren, Li Xiong, Tianzhen Wang, Yanbei Pang, Sheng Wang, and Feifei Li. EulerFD: An Efficient Double-Cycle Approximation of Functional Dependencies. ICDE 2023. (CCF A)

Qiheng Sun, Xiang Li, Jiayao Zhang, Li Xiong, Weiran Liu, Jinfei Liu*, Zhan Qin, and Kui Ren. ShapleyFL: Robust Federated Learning Based on Shapley Value. KDD 2023. (CCF A)

Pengyun Zhu, Jinfei Liu*, Long Wen, Feng Xue, Jian Lou, Zhibo Wang, and Kui Ren. CAPP-130: A Dataset of Chinese Application Privacy Policy Summarization and Interpretation. NeurIPS 2023. (CCF A)

Yuke Hu, Wei Liang, Ruofan Wu, Kai Xiao, Weiqiang Wang, Xiaochen Li, Jinfei Liu, and Zhan Qin. Quantifying and Defending against Privacy Threats on Federated Knowledge Graph Embedding. WWW 2023. (CCF A)

Xiaochen Li, Weiran Liu, Hanwen Feng, Kunzhe Huang, Jinfei Liu, Kui Ren, and Zhan Qin. Privacy Enhancement via Dummy Points in the Shuffle Model. TDSC 2023. (CCF A)

Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. Projected Federated Averaging with Heterogeneous Differential Privacy, VLDB 2022. (CCF A)

Jinfei Liu, Qiongqiong Lin, Jiayao Zhang, Kui Ren, Jian Lou, Junxu Liu, Li Xiong, Jian Pei, and Jimeng Sun. Demonstration of Dealer: An End-to-End Model Marketplace with Differential Privacy. demo track, VLDB 2021. (CCF A)

Jinfei Liu, Jian Lou, Junxu Liu, Li Xiong, Jian Pei, and Jimeng Sun. Dealer: An End-to-End Model Marketplace with Differential Privacy. VLDB 2021. (CCF A)

——We present the first end-to-end machine learning model marketplace Dealer, which formulates compensation functions for data owners and price functions for model buyers, and proposes the market decisions taken by the broker by formulating two optimization problems: revenue maximization problem with arbitrage-free constraint for model pricing and Shapley coverage maximization problem for model training.

Jinfei Liu, Li Xiong, Qiuchen Zhang, Jian Pei, and Jun Luo. Eclipse: Generalizing kNN and Skyline. ICDE 2021. (CCF A)

Wenhui Yu, Xiangnan He, Jian Pei, Xu Chen, Li Xiong, Jinfei Liu, and Zheng Qin. Visually Aware Recommendation with Aesthetic Features. VLDBJ 2021. (CCF A)

Wenhui Yu, Xiao Lin, Jinfei Liu*, Junfeng Ge, Wenwu Ou, and Zheng Qin. Self-propagation Graph Neural Network for Recommendation. TKDE 2021. (CCF A)

Yang Cao, Yonghui Xiao, Shun Takagi, Li Xiong, Masatoshi Yoshikawa, Yilin Shen, Jinfei Liu, Hongxia Jin, and Xiaofeng Xu. PGLP: Customizable and Rigorous Location Privacy through Policy Graph. ESORICS 2020. (CCF B)

Jinfei Liu, Li Xiong, Jian Pei, Jun Luo, Haoyu Zhang, and Si Zhang. SkyRec: Finding Pareto Optimal Groups. demo track, CIKM 2019. (CCF B)

Jinfei Liu, Li Xiong, Jian Pei, Jun Luo, Haoyu Zhang, and Wenhui Yu. Group-based Skyline for Pareto Optimal Groups. TKDE 2019. (CCF A)

Jinfei Liu, Juncheng Yang, Li Xiong, Jian Pei, Jun Luo, Yuzhang Guo, Shuaicheng Ma, and Chenglin Fan. Skyline Diagram: Efficient Space Partitioning for Skyline Queries. TKDE 2019. (CCF A)

Jinfei Liu, Wenhui Yu, Jian Pei, Li Xiong, Xu Chen, and Zheng Qin. Efficient Contour Computation of Group-based Skyline. TKDE 2019. (CCF A)

Jinfei Liu, Juncheng Yang, Li Xiong, and Jian Pei. Secure and Efficient Skyline Queries on Encrypted Data. TKDE 2018. (CCF A)

Jinfei Liu, Juncheng Yang, Li Xiong, Jian Pei, and Jun Luo. Skyline Diagram: Finding the Voronoi Counterpart for Skyline Queries. ICDE 2018. (CCF A)

Jinfei Liu, Juncheng Yang, Li Xiong, and Jian Pei. Secure Skyline Queries on Cloud Platform. ICDE 2017. (CCF A)

Wenhui Yu, Zheng Qin, Jinfei Liu, Li Xiong, Xu Chen, and Huidi Zhang. Fast Algorithms for Pareto Optimal Group-based Skyline. CIKM 2017. (CCF B)

Jinfei Liu, Li Xiong, Jian Pei, Jun Luo, and Haoyu Zhang. Finding Pareto Optimal Groups: Group-based Skyline. VLDB 2015. (CCF A)

Jinfei Liu, Haoyu Zhang, Li Xiong, Haoran Li, and Jun Luo. Finding Probabilistic k-Skyline Sets on Uncertain Data. CIKM 2015. (CCF B)

Jinfei Liu, and Li Xiong. Secure Similarity Queries: Enabling Precision Medicine with Privacy. DMAH workshop track, VLDB 2015. (CCF A)

Haoran Li, Li Xiong, Xiaoqian Jiang, and Jinfei Liu. Differentially Private Histogram Publication For Dynamic Datasets: An Adaptive Sampling Approach. CIKM 2015. (CCF B)

Jinfei Liu, Li Xiong, and Xiaofeng Xu. Faster Output-Sensitive Skyline Computation Algorithm. Information Processing Letters, 2014.

——We design a faster skyline algorithm that has not been improved in the past 29 years from the theoretical perspective.

Teaching

Services

Conference

Journal review

Awards